12#include <yarp/sig/Vector.h>
13#include <yarp/math/Rand.h>
21using namespace yarp::sig;
23std::pair<Vector, Vector>
createSample(
double min_in,
double max_in) {
24 std::pair<Vector, Vector> sample;
25 sample.first.resize(1);
26 sample.second.resize(1);
27 double input = yarp::math::Rand::scalar(min_in, max_in);
28 sample.first[0] = input;
29 sample.second[0] = std::sin(input);
43int main(
int argc,
char** argv) {
44 std::cout <<
"LearningMachine library example (direct)" << std::endl;
57 sample.first[0] = scaler.
transform(sample.first[0]);
66 for(
int i = 0; i <
NO_TEST; i++) {
68 sample.first[0] = scaler.
transform(sample.first[0]);
70 double diff = sample.second[0] - prediction.
getPrediction()[0];
74 std::cout <<
"MSE on test data after " <<
NO_TEST <<
" samples: " << MSE << std::endl;
A class that implements preprocessing based on a fixed range of outputs to a fixed range of outputs.
virtual double transform(double val)
Transforms a single sample value according to the state of the scaler.
This is basic implementation of the LSSVM algorithms.
virtual void feedSample(const yarp::sig::Vector &input, const yarp::sig::Vector &output)
Provide the learning machine with an example of the desired mapping.
Prediction predict(const yarp::sig::Vector &input)
Ask the learning machine to predict the output for a given input.
virtual void train()
Train the learning machine on the examples that have been supplied so far.
virtual RBFKernel * getKernel()
Accessor for the kernel.
A class that represents a prediction result.
yarp::sig::Vector getPrediction()
Accessor for the expected value of the prediction.
virtual void setGamma(double g)
std::pair< Vector, Vector > createSample()