Bayes Filters Library
Classes | Typedefs | Functions
bfl::sigma_point Namespace Reference

Classes

struct  UTWeight
 

Typedefs

using FunctionEvaluation = std::function< std::tuple< bool, bfl::Data, bfl::VectorDescription >(const Eigen::Ref< const Eigen::MatrixXd > &)>
 A FunctionEvaluation return. More...
 

Functions

void unscented_weights (const std::size_t n, const double alpha, const double beta, const double kappa, Eigen::Ref< Eigen::VectorXd > weight_mean, Eigen::Ref< Eigen::VectorXd > weight_covariance, double &c)
 
Eigen::MatrixXd sigma_point (const GaussianMixture &state, const double c)
 
std::tuple< bool, GaussianMixture, Eigen::MatrixXd > unscented_transform (const GaussianMixture &input, const UTWeight &weight, FunctionEvaluation function)
 
std::pair< GaussianMixture, Eigen::MatrixXd > unscented_transform (const GaussianMixture &state, const UTWeight &weight, StateModel &state_model)
 
std::pair< GaussianMixture, Eigen::MatrixXd > unscented_transform (const GaussianMixture &state, const UTWeight &weight, AdditiveStateModel &state_model)
 
std::tuple< bool, GaussianMixture, Eigen::MatrixXd > unscented_transform (const GaussianMixture &state, const UTWeight &weight, MeasurementModel &meas_model)
 
std::tuple< bool, GaussianMixture, Eigen::MatrixXd > unscented_transform (const GaussianMixture &state, const UTWeight &weight, AdditiveMeasurementModel &meas_model)
 

Typedef Documentation

◆ FunctionEvaluation

using bfl::sigma_point::FunctionEvaluation = typedef std::function<std::tuple<bool, bfl::Data, bfl::VectorDescription>(const Eigen::Ref<const Eigen::MatrixXd>&)>

A FunctionEvaluation return.

  • a boolean indicating if the evaluation was successful
  • the output data in the form of bfl::Data
  • the description of the output in the form of bfl::VectorDescription

Definition at line 35 of file sigma_point.h.

Function Documentation

◆ sigma_point()

MatrixXd bfl::sigma_point::sigma_point ( const GaussianMixture state,
const double  c 
)

◆ unscented_transform() [1/5]

std::tuple< bool, GaussianMixture, MatrixXd > bfl::sigma_point::unscented_transform ( const GaussianMixture input,
const UTWeight weight,
FunctionEvaluation  function 
)

◆ unscented_transform() [2/5]

std::tuple< bool, GaussianMixture, MatrixXd > bfl::sigma_point::unscented_transform ( const GaussianMixture state,
const UTWeight weight,
AdditiveMeasurementModel meas_model 
)

Definition at line 285 of file sigma_point.cpp.

References bfl::GaussianMixture::components, bfl::GaussianMixture::covariance(), bfl::MeasurementModel::getMeasurementDescription(), bfl::MeasurementModel::getNoiseCovarianceMatrix(), bfl::MeasurementModel::predictedMeasure(), and unscented_transform().

Here is the call graph for this function:

◆ unscented_transform() [3/5]

std::pair< GaussianMixture, MatrixXd > bfl::sigma_point::unscented_transform ( const GaussianMixture state,
const UTWeight weight,
AdditiveStateModel state_model 
)

Definition at line 230 of file sigma_point.cpp.

References bfl::GaussianMixture::components, bfl::GaussianMixture::covariance(), bfl::StateModel::getNoiseCovarianceMatrix(), bfl::StateProcess::getStateDescription(), bfl::StateProcess::propagate(), and unscented_transform().

Here is the call graph for this function:

◆ unscented_transform() [4/5]

std::tuple< bool, GaussianMixture, MatrixXd > bfl::sigma_point::unscented_transform ( const GaussianMixture state,
const UTWeight weight,
MeasurementModel meas_model 
)

Definition at line 259 of file sigma_point.cpp.

References bfl::MeasurementModel::getMeasurementDescription(), bfl::MeasurementModel::predictedMeasure(), and unscented_transform().

Here is the call graph for this function:

◆ unscented_transform() [5/5]

std::pair< GaussianMixture, MatrixXd > bfl::sigma_point::unscented_transform ( const GaussianMixture state,
const UTWeight weight,
StateModel state_model 
)

Definition at line 207 of file sigma_point.cpp.

References bfl::StateProcess::getStateDescription(), bfl::StateProcess::motion(), bfl::VectorDescription::total_size(), and unscented_transform().

Here is the call graph for this function:

◆ unscented_weights()

void bfl::sigma_point::unscented_weights ( const std::size_t  n,
const double  alpha,
const double  beta,
const double  kappa,
Eigen::Ref< Eigen::VectorXd >  weight_mean,
Eigen::Ref< Eigen::VectorXd >  weight_covariance,
double &  c 
)